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Abstract. Currently three imaging spectrometer architectures, tunable 
filter, dispersive, and Fourier transform, are viable for imaging the 
universe in three dimensions. There are domains of greatest utility for 
each of these architectures. The optimum choice among the various 
alternative architectures is dependent on the nature of the desired 
observations, the maturity of the relevant technology, and the character 
of the backgrounds. The domain appropriate for each of the alternatives 
is delineated; both for instruments having ideal performance as well as 
for instrumentation based on currently available technology. The 
environment and science objectives for the Next Generation Space 
Telescope will be used as a specific representative case to provide a basis 
for comparison of the various alternatives. 

1. Introduction 

It is expected that within the year, a decision will be made as to the composition 
of the suite of science instruments to be deployed on the Next Generation Space 
Telescope (NGST). It is therefore a particularly good time for a discussion of the 
relative merits, and appropriate domains of greatest utility for the various 3-d 
imaging alternatives. There has been, and no doubt will continue to be, a great 
deal of discussion as to which approach to 3-d imaging is “the best”. There is no 
single correct answer, of course, since each type of instrument has its own 
strengths and weaknesses. 

It does not seem to be widely known that, in the limiting case of photon 
statistical noise dominance, the performance of a 3-d imaging spectrometer 
based on 2-d detector arrays is the same for all architectures, whether tunable 
filter, dispersive, or Fourier transform, provided that the same degrees of 
freedom are measured. In the following, I will first consider the photon statistics 
limited case, and show the equivalence between the various architectures. I will 
then generalize to the performance in the case that detector read noise, dark 
current, and Zodiacal background are included. I will consider specific 
parameters that are appropriate for the anticipated NGST environment. Finally, I 
will offer a suggestion for a hybrid instrument which combines the best features 
of all of the 3d architectures, and offers great potential for best meeting the 
NGST needs. 



2. Tunable Filter vs. Dispersive Spectrometer (Ideal Limit) 

In comparing between the various options, it is important to assume equivalent 
detectors. In order to obtain 3-d data using a 2-d detector array, a series of 
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Figure 1. A schematic 
comparison between a Tunable 
Filter Imaging Spectrometer and a 
Dispersive Imaging Spectrometer 

exposure% must be made. Consider an N x 
M pixel focal plane array, having no “gaps” 
between the pixel elements. Typical frames 
for a dispersive imaging spectrometer (DS), 
and a tunable filter imaging spectrometer 
(TF) are indicated schematically in figure 1. 
In general, it is of course not necessary for 
the spatial samples observed by the DS to 
be contiguous, as implied by the 
arrangement displayed in figure 1. Nor is it 
necessary for the spectral samples observed 
by the TF to be contiguous and non- 
overlapping, as is also implied by the 
configuration displayed in figure 1. Indeed, 
in some cases, non-contiguous spectral 
sampling is desirable, and the TF system 
lends itself much more naturally to this 
mode of operation. On the other hand, for 
some questions, the ability to observe non- 
contiguous spatial samples is very 
important, and the DS approach, such as 
with a Multi-Object Spectrometer (MOS), is 
better suited for such measurements. For the 
moment, consider the case that the same 
spatial and spectral samples are covered by 
both the TF and the DS. Assume that the 
spectral samples represented by the various 
pixels along the dispersion direction in the 
DS correspond exactly both in terms of 
bandwidth and band center to the series of 
measurements made by the TF system, and 
that the spatial samples represented by the 
various pixels in the TF system similarly 
correspond exactly to the series of spatial 
measurements made by the DS system. In 
this case, if the total observation time is 
divided equally among the spectral samples 

for the TF case, and for the spatial samples in the DS case, each cell in the 3-d 
datacube is observed for the same exposure time, and with the same efficiency. 
Clearly the signal to noise performance will be the same for both of these 
configurations. 

3. Tunable Filter vs. Fourier Transform Spectrometer (Ideal Limit) 

The relation between the performance of an ideal tunable filter spectrometer 
with an ideal Fourier transform spectrometer is more subtle than that between 
the tunable filter and the dispersive spectrometer. One simplification, however, 
is that since the size of the image may be assumed the same for the FT and TF 
systems, it is only necessary to consider the information content of a single 
representative detector element obtained via either the TF or the FT system. 



It is helpful to consider an analogy with the use of the Modulation 
Transfer Function (MTF) for the characterization of imaging systems. Consider 
an “object” spectrum having a sinusoidal intensity variation as a function of 
frequency. Also assume that this object spectrum is observed with a TF 
spectrometer having uniformly spaced filter samples, and that all of the filter 
samples have an equal transmission bandwidth. The “image” spectrum would 
also have a sinusoidal intensity variation as a function of frequency. In the case 
that the period of the sinusoidal intensity variation is much smaller than the 
characteristic width of the TF spectral channels, the “image” spectrum 
modulations are greatly reduced. Furthermore, if the spacing of the TF spectral 
samples is not sufficiently dense, the period of the modulations in the “image” 
spectrum may be altered by “abasing effects”. 

An FT spectrometer, at each of a sequence of retardance settings, directly 
measures the intensity of a particular sinusoidal intensity variation in the object 
spectrum. The set of such measurements constitutes an interferogram. In order to 
compare the information content of TF spectra measured in the frequency 
domain with FT interferograms measured in the transform domain, it is 
important to carefully consider the shape of the spectral response of the TF 
filters, their spacing, and the amount of spectral information content being 
measured. 

In a naive approach to a TF system, it would be assumed that the 
transmission function for each of the TF filters had a “top hat” shape, i.e. outside 
the spectral bandpass of a given filter the transmission would be zero, and within 
a given bandpass the transmission would be unity. Viewed in terms of the 
response to sinusoidal modulations in the “object” spectrum, such filters have 
undesirable ramifications, such as contrast reversal for some modulation periods, 
and aliasing for others. Correspondingly, the most straightforward approach to 
the acquisition of interferograms by an FT spectrometer, involving equal 
weighting of each of the retardance measurements, produces effective spectral 
response functions which have undesirable negative sidelobes. It is important to 
consider spectral transmission functions which do not have such “sharp corners” 
as the “top hat” shape for the TF case, and to consider tapered weighting of the 
interferograms for the FT case. 

Consider a sequence of measurements of the intensity of an underlying 
continuous spectral intensity function S(v), dependent on the frequency v, that is 
transmitted through a spectral filter T(V). For a transmission filter centered at v,, 
the observed number of photoelectrons would be given by 

Svo = Tva .IS(v)@vO - v)dv . 
0 

(1) 

Here the units of spectral radiance S(v) are photons/Hz/s, the exposure time for 
the observation is Tv,, in units of s, while the transmission function T(V) is 
dimensionless. Also, although the integration limits extend to infinity, this is a 
purely formal convenience, and in this integral, as in others to follow, the 
integrand will always be limited to a finite range. The frequency variable, v, is 
in units of Hz. (It is sometimes convenient to use the wavenumber equivalent of 
the frequency, defined by v/c, and having dimensions of cycles per cm). It is 
assumed that the quantum efficiency is unity. The peak transmission is assumed 
to be unity, and the effective width of the transmission filter may be defined by 
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Av effective = I T(v)dv . (2) 
0 

In the case that the’spectral radiance function varies slowly over the interval for 
which T(V) is significant, the integral in equation (1) may be approximated by 

S v. z Tvo WV0 Uveffective * (3) 

The variance in the observed number of photoelectrons, in the statistical noise 
limit is equal to the total number of photoelectrons detected, 

(4) 

Using the relation between the observed counts and the estimate of the 
underlying spectral radiance function evaluated at v, of equation 3, 

wo > wwo>> = T Av * 
VO effective 

(5) 

For comparison with the FT spectrometer case, for which the noise spectrum 
var(S(v,)) is independent of v,, the dwell time TV, is taken proportional to S(v,J. 
(This assumed dwell time variation could of course only be used if the spectrum 
is known, and would not be applicable to multiple pixels, if they contain 
different spectra. The impact of varying spectral shape on the comparison 
between FT and TF spectrometers will be further discussed below.) The constant 
of proportionality may be determined by requiring that the sum over all v o 

channels yields the total observation time, 

Wo)Avo 
TV0 = &ml . 00 * (6) 

I S(v)dv 
0 

Here the factor Av, is the spacing between the TF spectral samples. For this 
integration time sequence the spectral variance becomes, 

V~cw, >> = 
1 O” 

I 
Ttotal AVOAveffective o 

Wdv , (7) 

With measurements made at the sample spacing Avo = AVeffective this yields 

var(S(Vo)) = 
1 O” 

Ttotal ( Aveffective I2 
I S(v)dv . 
0 

(8) 

Measurements made at a sample spacing much finer than this produce- 
little additional information about the continuum function S(v), since the 



magnitude of AVeffective sets a practical limit to the fineness of the resolution 
recoverable, no matter how fine the sample spacing. 

3a. Derivation of the Basic Fourier Transform Relationships 

The intensity of the interference pattern in a dual output port Michelson 
interferometer, I(x), is a continuous function of the optical path difference x, i.e. 
the retardance, between the two mirrors, related to the continuous spectral 
intensity detected, S(v), by the integral, 

cm 

1~(x)=;jS(v)(lfcos(2~~x))dv . 
0 

C 

The two output ports correspond to the two sign values, with the “+” sign 
corresponding to the output port for which the two interfering beams are in 
phase at zero optical path difference (ZPD), and the “-” sign corresponding to 
the output port with out of phase beams at ZPD. As before, the product S(v)dv 
has units of counts per second. Equation (9) is valid for a perfectly 
compensated, perfectly efficient beam splitter. Real beam splitters have 
dispersion and are not perfectly efficient, but these complications are easily dealt 
with in practice. It is convenient to form the sum and difference of the signals 
from the two output ports of the interferometer. These two quantities are given 
by the integrals, 

IX(x) = IS(v)dv , 
0 

(10) 

and 
M 

Ia = jS(v)cos(2x;x)dv . 
0 

(11) 

Note that the summed signal is independent of the optical path difference x, and 
is simply given by the integrated spectral intensity. Thus at each retardance 
setting of the interferometer the full broad band image is measured. This is 
because, in the absence of absorption losses, every photon entering the 
interferometer goes to one or the other of the exit ports. The difference signal, at 
the zero retardance position also becomes equal to the same full band intensity 
integral. 

This feature of the summed signal from an FT system suggests that a 
desirable hybrid of FT and TF may be obtained by simply having a tunable filter 
placed in the optical train of an imaging FT spectrometer. In this case, the sum 
of the two output ports of the FT spectrometer provides the unmodulated full 
intensity of the light that has passed through the tunable filter. In addition, 
higher resolution spectral imaging may be obtained at the same time. In this 
hybrid approach, the summed output will be called the “panchromatic” output of 
the FT, while the transform of the difference output will be called the “spectral” 
output of the FT instrument. 

In general, it is advantageous to have the dwell time depend on 
retardance in order to tailor the effective spectral line shape and maximize data 
collection efficiency. This is typically done for radio astronomy, but is not 
typically done for laboratory FTIR spectroscopy. A typical interferogram would 



consist of a set of N discrete samples of the continuous function I(x), symmetric 
about the point x=0, each observed with dwell time T,. 

I, = T, *I&,> with x, = n6x n in the range [-F + l,:]. (12) 

Discrete Fourier transformation results in periodogram estimates, S,, at integer 
multiples k of a fixed frequency spacing 6v, approximately related to the 
continuous function S(v) by 

Sk = To . S(vk)Sv with vk = k&v k in the range [-! + l,:]. (13) 

The approximate relation between the discrete spectral estimate and the 
continuous spectral function is accurate to the extent that the continuous spectral 
function varies sufficiently slowly in the neighborhood of the discrete sample 
point at v=v,. This condition is similar to that used in writing expression (3) for 
the TF case. The spectral sample spacing 6v and the interferogram sample 

spacing 6x are related by 6v = --% 
N&x ’ 

The S, values are given by the discrete 

Fourier transform, 

I, exp(-i2KE) . 

The inverse discrete Fourier transform is 

Sk exp(i2n 2) . 

(14) 

(15) 

The normalization used for the Fourier transform pair displayed in expression 
(14) and (15) has been chosen to most directly reflect the continuum relation of 
expression (11). 

It follows from the convolution theorem that the spectral line shape, S”“, 
for a particular set of dwell times T, is proportional to a Fourier transform, 

Tn exp(-i2nz) . (16) 

With this normalization, the peak of the resolution function at k=O is equal to 
unity. This resolution function plays the same role as the transmission function 
z(v) for the TF case. Just as for the TF case, an effective width for the resolution 
function may be defined by summing over all k values, 

N/2 
Av effective =&.I Cs’k”“d- N6v . 

k=-N /2+1 Ttotal 
(17) 



Although the case of uniform integration times is simplest for the FT 
spectrometer, and indeed is the most common mode of operation of laboratory 
FTIR instruments, it is not the most efficient. Furthermore, for purposes of 
comparison with a TF spectrometer, the resolution function (a sine function) has 
negative sidelobes,, which cannot be realized by a physical transmission filter 
function z(v). There are many choices for the dwell time series which produce 
non-negative spectral line shape functions which can be physically realized as 
transmission filter profiles. One of the simplest is the triangular apodization 
series, defined by 

2. I n I T, =To(l-- , 
N) 

n = -N/2 + l,...,O,+..N/2 . (18) 

The spectral line shape that results from this weighting is a sine-squared 
function. 

3b. Fourier Transform Spectrometer Noise 

For a real interferogram, the discrete spectrum is hermitian, i.e. Re Sk = Re S-k. 
while Im Sk = - Im S-k. The point k=N/2 corresponds to the Nyquist frequency. 
For a perfectly compensated beam splitter, with 100% modulation efficiency and 
no noise, the interferogram will also be symmetric. A real, symmetric 
interferogram produces a real, symmetric spectrum. Noise in the interferogram 
is real, and produces a hermitian contribution to the calculated spectrum. Noise 
in the interferogram is not necessarily symmetric, however, and thus contributes 
to both the real and the imaginary parts of the calculated spectrum. By virtue of 
the linear relation between interferogram and spectrum, and with the notation 
that primed quantities represent noise contributions, the spectral noise is simply 
the Fourier transform of the interferogram noise. 

N/2 
&=-$ c 

n=-N / 2+1 
in exp(-i2n$) . 

For a dual ported interferometer, with focal plane detectors having 
equivalent noise performance characteristics, specifically having a noise 
variance given by the sum of a read noise term, n,’ plus a statistical noise term, 
the difference interferogram measurements have the noise characteristics: 

( > I’, = 0, ( ) in& = 6,,, .(2nr2 + T”IO, . 
TO 

(20) 

In the above expressions, the angle brackets represent an ensemble average. It is 
assumed that the noise is uncorrelated for different samples of the interferogram. 
The statistical properties of the spectral noise that follow from (19) and (20) are 

(,$k)=o, ((Reik)‘)=($)z y (2n~+$I())‘cos2(2n$). (21) 
n=-N l2+1 

Since for finite k values, the cos* factor in expression (21) oscillates much more 
rapidly as a function of n than the factor T,, it may be well approximated by l/2. 
With this approximation, the spectral noise becomes independent of k, i.e. it is 
“white”. The variance of the measured continuum spectrum thus is given by 



va(s(vk >> = 
< (ReSi)2 > 2 

(To&F = CAVeffective * Ttotal 1 
2 (2Nnr2 + Ttotal ~s(v)dv) - (22) 

0 

In the case that of a l-sided interferogram, with samples 

I, = T, -IA@,> with x, = n6x n in the range [O,N1 - 11. (23) 

the variance of the measured continuum spectrum is given by 

var(s(vk)) = 1 

(AVeffective * Ttotal I2 
Wpr2 + Ttota, ^jS(v)dv) - (24) 

0 

Although it may appear that the decrease in the variance has come “for free”, 
there is really no greater information content, since the density of independent 
spectral samples is only half as great in the spectrum derived from the l-sided 
interferogram. The difference in the variance between l-sided and 2-sided 
interferograms can be most easily derived (for perfectly symmetrical 
interferograms) by averaging each -n interferogram sample with the +n sample, 
and computing the Fourier transform of the resulting l-sided interferogram. The 
statistical noise would be reduced by a factor of l/11(2) for each interferogram 
sample, and since only half as many readouts would be required, the readout 
noise would be reduced a factor of 2. 

Expression (24), in the absence of read noise, matches expression (8) 
obtained for the TF case. Expression (22), similarly matches expression (7) for 

the TF case with a sampling interval Avo = i AVeffective, as is appropriate for 

the more dense sampling in frequency space. 

4. Zodiacal Background and Detector Noise Terms 

V 

K 

~0.0001 ’ ’ ’ 1 ’ ’ ’ i ’ ’ ’ i ’ ’ ’ 
2000 4000 6000 8000 

Frequency (cycles/cm) 
1 lo4 

Figure 2. The magnitude of the Zodiacal light 
background expected for NGST in a 1 a.u. orbit 

The Zodiacal light 
produces a substantial 
limiting background flux 
for NGST. For a 1 a.u. 
orbit, thermal emission 
from dust dominates at 
wavelengths longer than 
about 3.5 microns, while 
for wavelengths shorter 
than this, scattered 
sunlight produces the 
dominant background. An 
estimate of this 
background spectrum is 
displayed in the figure. 
The zodiacal background 
flux is constant, to good 
approximation, over the 

range of frequencies from 3,000 to 10,000 cycles/cm, at a level of approximately 
3x10-4 photon cm per second. Detector noise performance levels anticipated for 
deployment on NGST are displayed in the table below. The impact on the 



performance of the various 3-d imaging systems generated by these background 
sources are displayed in the next section. 

Table I. NGST Detector Performance Expectations 
Case Single Frame Read Dark Current, 

Noise, n, (electrons) I, (e/s) 
Current 15 0.1 

Goal 3 0.02 

5. The Impact of Backgrounds on 3-d Spectrometers 

The signal to noise ratio, SNR, in the presence of backgrounds, (including 
detector dark current, I,, read noise, nr, and zodiacal background, Z(V) ), for the 
TF and the DS case, is given by 

SNR = 77 * QE . S(V)AVeffTv 

{QE.(S(V)+Z(V))AVeff)+Id}.Tv +nf * 
(25) 

In this expression, the QE factor represents not only the quantum efficiency of 
the detector elements themselves, but also includes all other system transmission 
losses, such as non-unity reflectance for reflecting surfaces, and non-zero 
absorption losses in any transmitting elements. In general this factor may vary 
spectrally, and in a fairly complex manner. Dispersive gratings, for example, 
will have reflective losses for off-blaze angles of reflection. Tunable filters have 
absorptive losses which tend to be greater for high resolution broadly tunable 
filters. The efficiency factor q in expression (25) encapsulates all effects which 
lower the signal level without concomitantly lowering the background level, 
such as surface scattering losses, for example. 

The signal to noise ratio in the presence of backgrounds for the FT case 
is obtained from expression (24) by including the modulation efficiency factor 
and QE effects, adding both the zodiacal background and the detector dark 
current contributions to the total number of photoelectrons observed, and 
including readout noise, 

SNR = q * QE . S(V) * AVeff Ttotal 

* {QE . j(S(v) + Z(v))dv + Id}. Ttotal + 2Nnf 
(26) 

Fourier transform spectrometers have a modulation efficiency factor which 
enters into the TJ efficiency factor for the spectrally resolved SNR, but not into 
the pan-chromatic SNR. The magnitude of the read noise term which appears in 
expressions (25) and (26) depends on the number of non-destructive readouts of 
the detector array that are averaged to determine the estimated photo-current I 
for a particular spectrometer setting. This number is a compromise between 
integrating the photo-current for a longer time, which lowers the variance, and 
averaging more readouts, which decreases the amount of time available for 
integration. To good approximation, the optimum number of readouts is 
determined by I, the single frame read noise nl, and the time it takes to read out 
the array, At, via 

Optimum Number of Readouts = - Therefore nr2 = nI&t . (27) 



Estimates of plausible realistic values for the system QE and q values are 
listed in Table II for operation in the K band. The NGST main telescope 
transmission was calculated assuming that all of the mirrors are gold coated. The 
dispersive spectrometer values are taken from curves computed by Satyapal’, for 
the K band at either R=l,OOO or R=lO,OOO. The tunable filter efficiencies are 
estimated on the basis of Northrop Grumman tunable Fabry-Perot performance 
values*. The somewhat surprisingly low QE for the tunable filter may be 
attributed to the fact that the effective number of surfaces seen by the 
transmitted light is approximately equal to the finesse. The FT modulation 
efficiency corresponds to that of a 30” incident angle NIR-MidIR CsI Bornem 
beamsplitter. 

Table II. Spectrometer Efficiency Assumptions (K band) 
Case QE r7 
TF 0.35 1 
DS 0.6 0.7 
FT 0.7 0.95 

The Noise Equivalent Flux Density, NEFD, at a particular significance 
level is derived from the SNR equations by solving for the flux S which 
produces the given significance level. The NEFD for observations in the K band 
at 2.2 pm, (as one example) at the 10 0 level, for a variety of imaging 
spectrometer options are displayed in figure 3 as a function of spectral 
resolution. From these curves, for a particular problem of interest, it is easy to 
select the optimum instrumental configuration. At the lowest spectral resolution 

At the lowest spectral resolution, all of the 3d instruments converge to 
the performance of an R=5, K band camera. At the highest spectral resolution, 
the DS has the best performance for spectroscopy, although only for the small 
number of objects that may be contained “within the slit”. This fact is the basis 
for the current pre-eminence of Multi-Object Spectrometers and Integral Field 
Units in high resolution astronomical spectroscopy. For the purpose of imaging 
in a very narrow, single emission line band, the TF provides an NEFD 
performance equivalent to that of the DS, but for every pixel in the field of view. 
For the purpose of obtaining complete spectra for every pixel in the field of 
view, the FT instrument substantially outperforms the TF or the “mapping DS”, 
(whose performance becomes essentially equivalent to the TF). The point of 
equivalence between the imaging FT and the DS comes at the point for which 
the number of settings of the DS is equal to the square of the ratio in 
performance between the single setting DS and the imaging FT. 

For any resolution, the imaging FT instrument has the advantage that not 
only are spectra obtained for every pixel in the field of view, but that very deep 
K-band imaging (in this example, but it could be J, H, L, etc.) is simultaneously 
acquired. In many of the design reference missions for NGST, the needs for both 
deep imaging and spectroscopy may be met simultaneously. The fact that such 
imaging is produced for every resolution setting of the FT instrument is 
indicated in figure 3 by the lowest NEFD curve labeled “panchromatic FT”. 

At the highest spectral resolution, the relatively strong signals required 
imply that for many fields of interest to NGST, the angular density of observable 
objects will be small enough that at most one object is expected per field of 
view. In this situation, it is not helpful to obtain spectra for every pixel in the 
field of view, and the spatial multiplexing of the imaging FT is not useful. -. 

A very interesting hybrid approach4 is possible, however, which takes 
advantage of the best features of all of the 3d imaging approaches. This is the 
combination of an objective prism with an imaging FT spectrometer. A 
relatively modest dispersion across one dimension of the image plane serves to 



reduce the spectral bandpass acceptance that is involved in the noise term for the 
FT spectrometer. With a slit at an image plane, the “panchromatic” output of the 
FT spectrometer would yield the same results as an ordinary prism spectrometer, 
while the Fourier transformed interferograms would enable much higher spectral 
resolution at much,.reduced NEFD. The curve labeled “dispersed FT” in figure 3 
corresponds to the assumption that a prism of dispersion equal to that of CaF, is 
placed in the collimated space of an imaging FT, and that the slit width is equal 
to one pixel. For some types of observations, it would not even be necessary to 
have a slit, as for observations of objects which have much higher intensity than 
their surroundings. 
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Figure 3. The Noise Equivalent Flux Density for a variety of 3d imaging 
approaches are displayed. The detector performance parameters are: 15 e read 
noise per readout, 0.1 e/s dark current. All observations extend over the K band, 
centered at 2.2 pm, and assume a total observation time of lo5 s. The time per 
readout is assumed to be 1 s. The QE and 77 efficiency values are those of table II 
for each of the systems. TF = tunable filter, DS=dispersive spectrometer, 
FT=Fourier transform spectrometer. The “mapping DS” corresponds to scanning 
over a number of field of view settings equal to the number of spectral channels 
for the TF at each resolution, and thus has an NEFD equal to that of the TF 
spectrometer. The single setting TF corresponds to the observation of a full field 
of view, but through only a single filter. The panchromatic FT line indicates the 
NEFD sensitivity for the full K band imaging that is obtained as a function of the 
resolution of the imaging FT system. This sensitivity is almost independent of the 
resolution, since the loss of exposure time involved in the multiple readouts for 
the spectroscopy is a small fraction of the total observation time. The dispersed 
FT curve corresponds to the addition of an R=630 prism in the collimated space 
of the imaging FT optical train, and the addition of a slit at an image plane. The 
dispersed FT case with slit, would not produce the panchromatic FT full field 
imaging. A dispersed FT case without slit would still produce the panchromatic 
FT full field imaging. 
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